Comparing several genetic algorithm schemes for the calibration of conceptual rainfall-runoff models
نویسندگان
چکیده
The Genetic Algorithm (GA) is often associated with local search optimisation techniques in the calibration process of Conceptual Rainfall-Runoff Models (CRRMs) (Wang, 1991; Franchini, 1996), i.e. the GA is used for approaching the region encompassing the global solution and then its results are used as a starting point for the local optimizer in the subsequent "fine-tuning" process. However, the GA can be formulated in very many ways. This study analyses various GA structures and their robustness and efficiency. In addition, a sensitivity analysis of the various schemes to their own parameters is performed. The analysis is conducted using an 11-parameter CRRM, called A Distributed Model (ADM), applied to both a theoretical case without model and data errors and two cases of the real world in which there are both model and data errors. Finally, assuming the same role as the GA for the "Pattern Search" (PS) method in a two-step optimisation technique (Hendrickson et al., 1988), the results of the two algorithms are compared, showing that, in the calibration of the ADM, the PS may give a slightly superior performance. Comparaison entre plusieurs systèmes d'algorithmes génétiques pour le calage de modèles conceptuels pluie-débit Résumé L'algorithme génétique (GA) est souvent associé aux techniques d'optimisation de recherche locale dans le processus de calage de modèles conceptuels pluie-débit (CRRMs) (Wang, 1991; Franchini, 1996); en d'autres termes, on se sert du GA pour avoir accès à la région environnant la solution optimale globale et ensuite on utilise ses résultats comme point de départ pour le système d'optimisation local dans le processus de "synchronisation de précision" qui va suivre. Cependant, il existe de très nombreuses manières de formuler le G A et la présente recherche étudie ces différentes structures, leur robustesse et leur efficacité. De plus, on procède à une analyse de la sensibilité des différents systèmes par rapport à leurs paramètres. Cette analyse utilise un CRRM avec 11 paramètres appelé ADM (c'est un modèle distribué) appliqué à un cas théorique supposé sans erreurs aussi bien en ce qui concerne le modèle que les données ainsi qu'à deux cas réels où, par contre, il existe des erreurs tant dans les modèles que dans les données. Enfin, en confiant le rôle du GA à la méthode de "Pattern Search" (PS) dans une technique d'optimisation à deux étapes (voir Hendrickson et al., 1988), on a comparé les résultats des deux algorithmes, ce qui a montré que pour le calage du modèle ADM le PS donne des résultats légèrement meilleurs.
منابع مشابه
تعیین پارامترهای مدل مفهومی ناش با استفاده از واسنجی اتوماتیک در حوزه کسیلیان
The appropriate use of a conceptual rainfall-runoff model depends on how well its parameters are calibrated. Generally, rainfall-runoff models deal with numerous parameters that cannot be measured directly and should be estimated through optimization tools. The purpose of the optimization approach is to finalize the best set of parameters associated with a given calibration data set that optimi...
متن کاملUsing genetic algorithm and TOPSIS for Xinanjing model calibration with a single procedure
Genetic Algorithm (GA) is globally oriented in searching and thus useful in optimizing multiobjective problems, especially where the objective functions are ill-defined. Conceptual rainfall-runoff models that aim at predicting streamflow from the knowledge of precipitation over a catchment have become a basic tool for flood forecasting. The parameter calibration of a conceptual model usually in...
متن کاملUsing genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure
Genetic Algorithm (GA) is globally oriented in searching and thus useful in optimizing multiobjective problems, especially where the objective functions are ill-defined. Conceptual rainfall–runoff models that aim at predicting streamflow from the knowledge of precipitation over a catchment have become a basic tool for flood forecasting. The parameter calibration of a conceptual model usually in...
متن کاملComparison of Efficiency for Hydrological Models (AWBM & SimHyd) and Neural Network (MLP & RBF) in Rainfall–Runoff Simulation (Case study: Bar Aryeh Watershed -Neyshabur)
For suitable programming and management of water resources, access to perfect information from the discharge at the watershed outlet is essential. In most watersheds, the hydrometric station is not available; then, different models are used to simulate the discharge within watersheds without data. The selection of preferred model for rainfall- runoff simulation depends to the purpose of modelin...
متن کاملEstimation of Runoff using Modified SCS Models
In recent decades, due to the importance of watershed management programs and the need for adequate information and correct estimation of rainfall and runoff, many conceptual models have been proposed. These models have parameters that must be estimated according to observational data. However, finding the optimal values for the parameters of simulation models has always faced uncertainty. One ...
متن کاملAutomatic Calibration of HEC-HMS Model Using Multi-Objective Fuzzy Optimal Models
Estimation of parameters of a hydrologic model is undertaken using a procedure called “calibration” in order to obtain predictions as close as possible to observed values. This study aimed to use the particle swarm optimization (PSO) algorithm for automatic calibration of the HEC-HMS hydrologic model, which includes a library of different event-based models for simulating the rainfall-runoff pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997